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HomotopicaUy Nontrivial Solutions for a Spherically 
Symmetric Gravitational Field 
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The structure of kink solutions to the Einstein field equations is discussed and 
the most general form of spherically symmetric kink metric is constructed. A 
number of fluid solutions are investigated and an imperfect fluid solution with 
nonzero heat conduction is presented. 

1. INTRODUCTION 

The existence of kinks in general relativity may be understood in at 
least three ways: in terms of the homotopy classes of metrics g~,~--as 
described in the original work of Finkelstein and Misner (1959); in terms 
of  deformation classes of direction fields on a Lorentz manifold ~ t - -as  
described by Geroch and Horowitz (1979) and by Bugajska (1987); or in 
terms of  inequivalent cross sections of the associated GL(4, R)/SO(3, 1) 
bundle--as  explained in the review article of Isham (1981). A central feature 
of a metric with kink(s) is that it cannot evolve or be transformed (by a 
nonsingular transformation) into a metric without a kink. One consequence 
of  this is that Birkhoff's theorem (which states that a spherically symmetric 
gravitational field in empty space must be static) cannot be applied globally 
to a region where the number of kinks is nonzero. Hence, when considering 
the general expression for a spherically symmetric metric, the usual pro- 
cedure of "transforming away" the grt cross term is inappropriate for a 
kink metric. Such a transformation would be singular, and so the metrics 
between which it transforms should be regarded as distinct. A similar 
situation arises in a recent study by Rosen (1983, 1985) of  a spherically 
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symmetric metric which satisfies the vacuum Einstein equations and yet is 
distinct from the Schwarzschild metric. Rosen's metric can be transformed 
into the Schwarzschild metric, but only by a transformation that possesses 
singularities. (However,  although his metric has a nonzero gr, term, it has 
no kink. The condition gr, ~ 0 is a necessary but not a sufficient condition 
for the existence of a kink.) 

In the present paper,  we shall consider the most general form of  
spherically symmetric metric. Since the decomposit ion of such a metric into 
its kink part  and nonkink part has not appeared in the literature, this is 
done explicitly in Section 2. In a previous paper  (Harriott  and Williams, 
1986), the authors introduced an energy-momentum tensor T,~ for a fluid 
whose velocity 4-vector u ~' was defined in terms of a parameter  that occurred 
naturally in a simple model of  a kink metric. This definition is extended in 
Section 3 below, where a more general choice for u ~" is proposed. Section 
4 presents some t ime-independent  solutions of  the Einstein equations. 
General  forms for the Christoffel symbols, Ricci tensor, and various hydro- 
dynamic quantities are listed in the Appendix. 

The ( - + + + )  signature and the conventions of  Misner et al (1973) are 
adopted throughout. Greek indices run over 0, 1, 2, 3 and Latin indices run 
over 1, 2, 3. The topology of the spacetime manifold is assumed to be trivial: 
.~ = R 4. 

2. METRIC 

The most general spherically symmetric metric is given in Cartesian 
coordinates { x ' }  by (Bergmann, 1942) 

ds2= g~,~dx ~ dx ~ 

= A dt2+ 2Bxi dt d x i +  (C80 + DXiXj) dx ~ dx j 

where A, B, C, and D are functions of  t = x ~ and r = (~ x~x~) 1/2, and where 
X~ = x~/r. This line element does not change its form under spatial rotation 
of  the coordinates {x;}. 

A well-known result of  matrix theory states that any nonsingular matrix 
can be written uniquely as the product of  a symmetric, positive-definite 
matrix S and an orthogonal matrix Q. If  this is done for a general relativistic 
metric g,~, 

IIg  H = s o  

then, following Steenrod (1951), the signature condition on g ~  implies that 
SQ = QS and that Q is symmetric as well as orthogonal and that it forms 
a group isomorphic with SO(3). [It is the "wrapping"  of physical space, 
R 3, about this SO(3) that produces the kinks (Finkelstein, 1978; Shastri 
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et al., 1980)]. The set of  4 • 4 positive-definite matrices is contractible since 
the identity map S ~ S is homotopic to the constant map S-> I through the 
homotopy 

t I + ( 1 - t ) S ,  0<- t -< l  

Being positive definite, S is thus homotopically trivial. The SQ factorization 
of the metric can be thought of  as the product of a kink part Q and a 
nonkink part S. The matrices S and Q will now be determined for the 
spherically symmetric metric given above. 

According to Perlis (1952), 

s = ( l lg~ l l~)  ~/~, Q = I I g ~ l l s - '  
To perform the square root operation, the metric must first be diagonalized. 
Since the metric is symmetric, there exists an orthogonal matrix P such that 
Pr]]g~]lP= diag(Ao, A1, A2, A3), with Ao<0 and A1, A2, A3> 0. Clearly, 

S = P diag(]Ao[, A1, A2, A3)P~ Q = P d iag(-1 ,  1, 1i 1)P r 

The eigenvalues are found to be 

Ao = {a  + C + D -  [ ( a -  C - D) 2 + 4B211/2}/2 

A~ = A2 = C 

A3 = {A + C + D + [ ( A -  C - D) 2 + 4B2]~/2}/2 

and, because Ao must be negative and Aa, A2, A3 must be positive, the 
following inequalities must hold: 

C > 0 ,  B2> A ( C  + D) 

The orthogonal matrix P can be deduced by the standard procedure, and 
is found to be 

' - (  C + D -  Xo)/ Ro 0 0 - (  C + D -  A3)/ R3 ~ 

BxX / ( rRo) 0 - S23/ r Bx' / ( rR3) 
p = Bx2/(rRo) x3/$23 xlx2/(rS23) Bx2/(rR3) 

Bx3/(rRo) -x2/$23 xlxa/(rS23) Bxa/(rR3) 

where we have used the shorthand 

g~ = [B2+ (C + D -  A~)2] ~/2 

$23 = ( x2x  2 + x3x3) ~/2 

It is appropriate to change variables. Instead of A, B, C, D, {AN} , we employ 
new variables A, y, ~r, a defined by 

ea = - A 0 ,  e"/~-.~/~ 1 =/~  2, e ~  ~_/~3 

sin 2a  = - 2 B [ ( A -  C - D)2 + 4Ba] -~/2 

cos 2a  = - (A - C - D)[ (A - C - D)2+4B2] -1/2 
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Doubling the angle in the arguments of sine and cosine above avoids having 
a factor of 1/2 in the expressions for S and Q. The matrices S and Q are 
given below. The ratio xi /r  is denoted by Xi; the difference e x - e ~ is denoted 
by e-,  and e~s2+e~c2-e ~ is denoted by F. The functions sin a and cos a 
are abbreviated, respectively, to s and c. We have 

S= 

Q= 

/eXc 2+ egs 2 e-sex1 e-scx2 e-scx3 \ 

e-sex1 e v q_ FX ~ FXIX 2 FXIX3 I 
e-sex2 FX1X2 e v + FX2 FX2X3 I 
e-scx3 FX,X3 FX2X3 eV + Fx 2] 

r + 2s 2 -2XlSC -2X2SC -2XaSC \ 
-2XlSC 1 -2X~S 2 -2X1X2 s2 -2X1X3s2 / 

-2x2se -2X1X2S 2 1-2X~S 2 -2X2X3S z] 
-2X3SC -2X1X3s 2 -2X2X3S z 1 -  2X~s 2 ] 

The matrix Q is a function of a but not of A, Y, or. The way in which 
Q represents a member of  SO(3) is best seen by introducing the functions 
{~bg} that define the "hedgehog" of skyrmionic gauge theory (Skyrme, 1961, 
1971; Williams, 1970): 

t~0 = COS O/ 

d~i=xis ina=(xi / r )  sina, i = 1 , 2 , 3  

Since ~ ~b.~b. = 1, the {~b.} represent (at any instant of  time t) a mapping 
from R 3 into the 3-sphere, S 3. The matrix elements of Q can be written in 
terms of  the {~b.} and the Kronecker delta 6~  (Williams, 1971; Williams 
and Zia, 1973): 

Q~, = 6~  - 2~b~b~ 

Since the functions ~b~ occur in pairs, the mapping determined by Q is a 
mapping into S 3 with antipodal points identified, i.e., a mapping into real 
projective 3-space RP 3. The latter is homeomorphic to SO(3). 

The signature of Q can be displayed by writing Q in the form Q = 
V r diag(-1 ,  1, 1, 1)V, where the orthogonal matrix V is given by 

6 o  ~,3 - 2 

--t~3 ~0 t~l / 
! 

The metric g . .  can also be expressed in terms of P according to Ilg.~[[ = 
P d iag( -  e x , e ~, e ~, e=)p r. 
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Kinks are counted,  both  in general relativity and in Skyrme's  theory, 
by  observing the boundary  values o f  the angle a. For  example,  if a (r  = 0) = 
and a (co) = 0, then the metric has one kink, and this would  imply Q,~ ~ r/~ 
as either r ~ 0  or  r-->co. In general, the number  o f  kinks is N =  
{,~(0)- ~(co)}/~. 

I f  a -= 0, then Q = d i a g ( -  1, 1, 1, 1) = [I rh, v II. Under  such circumstances,  
there would then be no kinks and g~,~ would  take the usual form that leads 
to the Schwarzschild solution. A diametrically opposi te  point  o f  view 
assumes a trivial S = d i a g ( 1 ,  1, 1, 1 )=  Ita,~ll and a nontrivial Q ~ =  
8 ~  -2~b~b~. This simple kink metric has been studied by C16ment (1984a-c,  
1986), Finkelstein and Williams (1984), Harriot t  and Williams (1986), 
1988a, b), Williams (1985), and Williams and Zia (1973). Finkelstein and 
McCol lum (1975) have shown that a is equal to the angle o f  tilt o f  the light 
cones. In the present paper,  we allow S and Q to keep their general form, 
which, putt ing IIg~ll = SQ, leads to 

goo = - e  ~ + ( e  a + e  ~) sin 2 a 

go~ = g~o = -x~(e ~ + e ~) sin a cos o~ 

gu = { e~ - ( e~ + e~) sin2 a}X,Xj + e~(Su - X i X j )  

From now on, it will be convenient  to work in spherical polar  coordinates 
t, r, 0, ~0, in terms of  which the metric g,~ can be written 

g,, = -eX + ( e  * + e  ~) sin 2 o~ 

g,~ = g~, = - ( e  ~ + e ~) sin a cos 

g~ = e ~ - (e ~ + e ~) sin 2 a 

goo = e ~r2 

g ~  = err  2 sin 2 0 

In the s tandard approach,  a t ransformation is per formed to set y-= 0. 
However,  for  the present we shall keep the above, more general form of  
metric. Rosen (1983, 1985) has found that, in certain situations, having 3/~ 0 
can lead to new solutions. 

3. K I N E M A T I C S  AND CURVATURE 

In  previous work (Harriot t  and Williams, 1986, 1988a, b) where the 
metric was Q,~ itself, the components  u ~' o f  the 4-velocity were identified 
with the ~b~, (or with its negative). This identification can be generalized 
and, for the g,~ o f  the present paper,  we now define 

U I = e - ~ / 2  c o s  tx ,  u r ----- e - x / 2  sin ~, u ~ = u ~ = 0 
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We note that for the a - 0 situation, where there are no kinks present, u t 

will be the only nonzero component.  However, if there is a kink present. 
there is no nonsingular transformation that will g l oba l l y  transform u r to 0. 
Of  course, locally or within a region of spacetime, it is possible to find a 
nonsingular transformation that will reduce the velocity vector to the form 
(u', 0, 0, 0), but, after making such a transformation, the simple form of the 
metric g.~ will be lost. 

It now follows that 

ut=--e'W2COSO~, Ur=--e;~/2sinot, u0 = u,p = 0  

so that the co- and contravariant components are related by 

U~ ~ - - e A t / ~  

and u~u ~ =  - 1 ,  as required. 
So far in this paper,  the analysis has been quite general, in the sense 

that the metric may be a function of both r and t. Henceforth, for tractability 
in computation,  we shall assume that the functions A, y, ~, ~ (and hence 
g~,) depend only on r. 

4. T I M E - I N D E P E N D E N T  S O L U T I O N S  

With the metric g ~  independent of  t, computations will become more 
manageable and, for the sake of  brevity, we introduce the symbols E, A, 
and f'l defined by 

E ~-- e h+cr 

A = 2-1Ory + r -1 

0 = OrA -- A(2E)-10rE + A z 

The contravariant components  g~'~, the Christoffel symbols, and the various 
l, hydrodynamic  quantities (projection tensor h . ,  covariant derivatives u.; ~, 

isotropic expansion 0, shear tensor o-~ and scalar shear o-) are all listed in 
the Appendix. Since the metric is spherically symmetric, the components 
of  the vorticity tensor w~ are obviously all zero. The computation of the 
Ricci tensor and the scalar curvature R is straightforward, and these results 
are also listed in the Appendix. It follows that the nonzero components  of  
the Einstein tensor are 

Gtt : - A E - l  {Org. + g . A  } - 2 g u E - 1 0  - e - V r  -2 

Gtr = - 2 g t r E - l f ~  

G T = 0  

Gr r = -AE-l{3rg, ,  + gttA} - e - r r - 2  

G o = G,~ = -(2E)-2{2E02rgtt - O,g,tOrE} - A E - l O r g  n -- gtt E - I n  
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v v v C o n s i d e r  the Eins te in  equat ions ,  G~, = 87rT~, with T~, chosen  to be 
v ~ v v the s t ress-energy t ensor  for  a perfect  fluid: T~ ( p + p ) u , u  + p 6 ~ .  Since 

G[  = 0, the  equa t ion  G[  = 8~rT[ impl ies  

p + p  = 0  

Thus,  the s t ress-energy t ensor  must  have the form T~ = p6~.  Assuming  that  
~ 0, G'r = 8~rT~. impl ies  f~ = 0, which  (for A # 0) leads  to 

A-lOr A -- ( 2 E ) - I o r E  + A = 0 

This can be  in tegra ted  to give 

kAe~'/2 r = El~  2 

where  k is an a rb i t ra ry  constant .  This can be rewri t ten as 

ar(r e ~/2) = k - l e  (a+~)/2 

The cond i t ion  ~ = 0 simplif ies the remain ing  G~ so that  

Gtt = G~ = - A 2 E - I { k 2  + E-1 /2Or(g t t~ - lE l /2 ) }  

0009 = G~ = I A{Or( A-2 Ot,) -I- er( E -1 ) (  k2 . o r  gtt ~- A-lO,gtt) } 

The Eins te in  equat ions  now read  

G~ = 8crp, G~ = 8 rrp 

Suppose  tha t  y --- 0. Then  A = r -a, and  so E = k. Litt le genera l i ty  is lost  
in assuming  k = 1, so that  E = 1, a = -o ' ,  and  g,, = - e  ~ cos 2 a + e -a sin 2 a. 
The equa t ion  for the  sca lar  curvature  simplif ies to R = r -202{r2( l+g , , ) } ,  

and  the expans ion  becomes  0 = r-20~(rZe - z /2  sin a ) .  I t  now fol lows that  

G~ = - r -2{1  + Or( rg,,)} = 8r 

G o = (2r)-18~(r2G',)  = 8 ~ p  

These equa t ions  imply  tha t  p, and  hence  G',, is a constant .  Since p + p  = 0, 
we assume p to be a negat ive  constant ,  p = - C .  Such cons tan t  negat ive  
pressures  are well  known  f rom inf la t ionary mode l s  (Guth ,  1981; Blau and  
Guth ,  1987). Fo r  convenience ,  we shall  also in t roduce  a cons tan t  M accord-  
ing to 

M = ( - 3 / 4 r r p )  1/2= ( 3 / 4 , n - C )  1/2 

The G', equa t ion  is 

O,(rg,,) = 8r 2 - 1 

which can be in tegra ted  and  rewri t ten as 

g,, = 8zrCr2/3 - 1 + c l /  r 
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where cl is an integration constant. Note that putting h---0 gives g,, = 
- 1 + 2  s in2a and leads to the solution obtained in our previous work 
(Harriott  and Williams, 1988): 

~ r / M ,  O<-r<-M 
s i n a = [ ( M / r ) l / 2  ' M<<r<oo 

This describes an object of  mass and radius M with an exterior vacuum 
solution. There is positive constant curvature R = 2 4 / M  2 and positive con- 
stant expansion 0 = 3 / M .  The  de Sitter solution has similar properties and 
it is relatively straightforward (Dunn and Williams, 1989) to construct a 
transformation between the above solution and the de Sitter solution. 
However,  the transformation is singular and so the two solutions describe 
(globally) different physical systems. 

Provided that the equation for gt, is satisfied, there is considerable 
freedom in choosing h (r). For example, choosing 

e -~ = 1 - 2 r 2 / M  2 

leads to 

sin2 a = t a n h  A for O<-r<M/21 /2  

and to a velocity u r that tends to zero at the r = M/21/2 boundary. For this 
solution, R = 2 4 / M  2, as before, but 0 = r-2Or{r2(e -x tanh A)l/2}. 

Now consider the stress-energy tensor for a viscous fluid (Misner 
et al., 1973; Ellis, 1971): 

To - pu~u + ( p -  ~O)h~ - 27qo', + q~u + u ,q  

where the coefficient of  bulk viscosity r and the coefficient of  dynamic 
viscosity r / a r e  both positive functions of  p and p. For the moment ,  assume 
that the heat conduction is negligible: q,  = 0. 

Suppose that h - 0  and sin a = r i M  (which was the h --=0 solution of 
the previous section). It is easy to show that the scalar shear is zero and 
hence t r .  = 0, for all /z,  v. Using the above expression for T~, and the fact 
that 0 = 3 / M ,  the Einstein equations yield the following equation of  state: 

p = - p + 3 ~ / M =  C 

with C = 3/4~rM 2, as before. Thus, p is positive and p may also be chosen 
positive provided that ~ > M p / 3 .  Since ~ is a function of p and p, and both 
of these are constant, it follows that the bulk viscosity ~ is also a constant. 
The idea of  combining the pressure with the bulk viscosity term has recently 
been discussed by Pacher et al. (1987) in the context of  inflation. 
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Alternatively, let us suppose that or > 0, but,  for simplicity, that  ~ = 0 
and % = 0. The equat ion Gt  = 0 leads to the equat ion o f  state: 

p + p  - (4/31/2) ~Tor = 0 

Since ~7 is positive, p will be positive if 4~/or/31/2> p. Again, G t, = 0 implies 
fl  = 0 and the expressions for  t _  G , - G ~ a n d G ~ -  * - G~ are the same as those 
for the perfect fluid. The remaining Einstein equations now read 

Gtt = G~ = 87r{p - (4/31/2) ~Tor } 

G 0  ~ ~ -  = G~ - 8zr{p + (2/31/2)nor } 

As in the perfect fluid case, one might assume y----0, and E = 1, so that 
A = -or, gn = -eX cos2 a + e -x sin 2 a and the Einstein equations become 

Gtt = - r -2{1  + Or(rg,)} = 8rr{p - (4 /31/2)  7/or} 

G~ = (2r)-~Or(r2Gtt) = 87r{p + (2/31/2) ~7o- } 

However ,  it is not  clear that  one can find a solution with positive energy 
density. A solution was previously obtained by Harriott  and Williams 
(1988a) for  the special case o f  A = 0, but  this did not  have a p that  was 
everywhere positive. 

N o w  consider the case where the heat conduct ion  is nonzero:  q ,  # 0. 
The condi t ion q,,u '~= 0 suggests 

qt = Qe ' /2  sin a, qr = - - Q  e~ cos a, qo = q ,  = 0 

where the e ~/2 factor  is included for convenience.  Hence 

qt = Qe-,,-/2 sin a, q '  = - Q e  -~/2 cos a, qO = q~ = 0 

and Q is seen to be the magni tude  o f  q~: 

q~q~ = Q2 

v The  ( q . u ~ +  u . q  ~) term occurr ing in the expression for  T~ will contain a 
e ~(~-x)/2 factor. To simplify this, we shall put  A = o- for the remainder  o f  
this section. It follows that  

qt u r + Ut q r = Q 

qr u t "}- urq ' = - Q 

The Einstein equat ion G7 = 8~rT~ gives 

Q = p + p  - ~0 - (4/31/2)7/or sin ot cos a 

The equat ion G t, = 8~-T'~ implies that 

Q = - (87r ) -1f l  e -x sin 2a  
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so that nonzero  heat conduc t ion  requires a nonzero  f /  (as well as the 
presence o f  the kink). The same Einstein equat ion leads to the following 
equat ion o f  state: 

4n-{p + p  - st0 - (4/3 ~/2) rio'} + e - q l  = 0 

Since we are now assuming that a = o-, the expression for E becomes E = e 2a, 
so that 

= O,A-  Aa,A + A 2 

with A = 2 - 1 a r T +  r -l .  
Al though II # 0  implies G ' , #  G~, the two equat ions G~ =87rT', and 

G~r=87rTrr can be shown to be equivalent, after some rearrangement  o f  
terms. They can be convenient ly  expressed as 

�89 + G~) = e - q 1  + 8~r{p - st0 - ( 4 / 3 ' / 2 )  T/G} 

The G o = 87rTo ~ equat ion reads 

0 Go = 87r{p - ~'0 + (2/31/2) r/G} 

Some assumptions  are necessary to simplify the expressions on the left-hand 
sides o f  these equations.  Set A = 0, which leads to E = 1, g ,  = - c o s  2a.  Since 
we are interested in the si tuation where 11 # 0, we require A # r -1. Choose  
Y = 2 ( - k r -  In r), where k is a constant.  This gives A = - k ,  11 = k 2, and 
e-~'r -2= e 2kr. Let us also assume that the dynamic  viscosity r/ is zero, so 
that the two Einstein equat ions become 

-k{Or(COS 2 a )  - 2k cos 2c~}- e 2kr - k 2 = 8~-(p - st0) 

and 

�89 2 a )  - k0,(cos 2 a )  + k 2 cos 2a  = 8~r(p - st0) 

This suggests the substi tution 

cos 2a  = A e  2k" + B + f ( r )  

where A and B are constants  and the, as yet unspecified, funct ion f ( r )  is 
included for greater flexibility in seeking a solution with positive energy 
density. Consis tency between the two Einstein equations can be achieved 
by choosing 

A = - k  -2 ,  B = 1, f ( r )  = C e  • 

where C is a constant.  For  a positive energy density p, it turns out that  the 
upper,  positive, sign should  be chosen in the expression for f ( r ) .  From now 
on, we shall make this choice. 
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For the interior region, as r increases from 0, we require sin a to 
increase from 0 to a maximum value of 1. This is ensured by chosing C = k-2: 

sin 2 a = l k - 2 (  e2kr --  e 2'/:kr) 

with 0 <- r <- ro, where 

e2kro  _ e2 t /2kro  .~_ 2 k  2 

Combining the Einstein equations with the equation of state leads to 

p = (8~r)-~{-2kOr(sin 2 a ) + 4 k  2 sin 2 a + e 2kr - 3 k  2} 

= ( 8 q T ) - l { ( 2 1 / 2  - -  2)e 2 ' /2kr  + e 2kr  - -  3k 2} 

which will be positive for a sufficiently small k, i.e., for k 2 < ( 2 1 / 2 - 1 ) / 3 .  
Using the formula given in the Appendix, the scalar curvature is found to 
be 

R = 2[2{(21/2- 2)e2'/~kr + e 2k~} - - 3 k  2] 

and is positive for the range of values of  k that is chosen above. 
This interior solution can be connected to an exterior ( r - t o )  solution 

such as the previously mentioned vacuum solution or a decaying exponential 
solution, which can be constructed in a similar way to the above increasing 
exponential solution. 

5. S U M M A R Y  

The most general form of spherically symmetric metric has been rewrit- 
ten in a manner  that clearly displays the presence of kinks in terms of the 
hedgehog function of gauge theory, (~bo, ~bl, ~b2, ~b3)~ S 3. For a time- 
independent metric, the curvature, Einstein tensor, and various hydrody- 
namic quantities were computed and a number  of kink solutions were 
explored. One of these was for an imperfect fluid with nonzero heat con- 
duction. 

APPENDIX 

The abbreviations 

E = -grrg,, + (gtr) 2 = e a+~, A = 2-1OrT q- r - 1  

will be used throughout. The determinant and the contravariant components  
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o f  the  m e t r i c  are  

Harriott and Williams 

de t (&. , )  = - r  4 s in  2 0 e a+2~+~ 

g "  = - e - *  + ( e  -a + e  -~)  s inEa  

g,r = gr, = _ ( e - a  + e - ~ )  s in  a cos a 

grr = e - ~ _ ( e - a  + e - ~ )  s in  2 a 

gOO = (evrE)- i  

g ~  = ( e r r  2 s in  2 0) - I  

The  n o n z e r o  Chris toffe l  s y m b o l s  are as fo l lows:  

r ' ,  = - r , ' ,  = - ( 2 E ) - ' g , , O , g ,  

r~, = - ( 2 E  )-~ gr,.O~gt, 

FT, = (EE) - 'g , , e rg , ,  

Ftrr = ( E E  ) - '  {g,,.,grg~,. - 2g,.,.O~g,,} 

F~r = ( E E ) - ' { - g t t 0 r & ~  + 2g,r0rg,~} 

F~oo = - E - l  g,re ~'rE A 

F ~  = s in  2 0 F~o 

F~oo = E - l  &teVr2 A 

F , ~  = s in  E 0 F~o 

- F ~  = A 

F~ = - s i n  0 cos 0 

Fo~ = cot  0 

The  c o m p o n e n t s  o f  the  p r o j e c t i o n  t e n s o r  are  

h', = s in  2 a 

htr = h~ = - s i n  o~ cos ct 

h ~ = cos 2 ot 

h O = h ~ = l  
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The  c o m p o n e n t s  o f  the  c o v a r i a n t  der iva t ive  o f  the  veloci ty  vec to r  a n d  the  

i so t rop ic  ( v o l u m e )  e x p a n s i o n  0 are 

=�89 Ut; t s in  ol Orgn 

Ur; t ~ - � 8 9  - A / 2  c o s  o~ Orgtt 

Ut;r = --O~( e a/2 cos ~ )  + u~;t 

Ur;~ = --O~(e a/2 s in  a )  -- �89 a O~g~+2 cos ot O~gtr) 

UO; 0 ~--- e-A/2+'Y/"2A s i n  (9/ 

ur = s in  2 O uo.o 

u~t = - (2E) - l e - '~ /2a , . g , , ( g , r  cos a + g,r s in  a )  

ul,. = ar( e -~/2 cos o~) + ( 2 E  )-a e - 'W2{-gr , .a ,g ,  cos a 

+ (g,,arg,.,. - 2grra,.g,,) sin a}  

u" = ( 2 E ) - l e - ' ~ / 2 a , . g , ( g ,  cos a + gt, s in or) ;t 

u r;,. =a , . ( e  -•/2 s in  o~)+(2E) - l e - '~ /2 {g , . a , . g ,  cos ct 

+ (-gt,a,.g,.r + 2g,,.a,g,,.) s in  a } 

0 u;o = u~,p = A e  -~'/2 s in  c~ 

O = u~, = r-2e-U'+2~'+")/2ar(r2e ~'+~ s in  a )  

= e(X+~)/2ar(e ~/2 s in a ) + 2 A ( e  -*/2 s in  a )  

The  o n l y  n o n z e r o  c o m p o n e n t s  o f  the  acce le ra t ion  covec tor  t i ,  = u~,;,.u" are 

lit = --e  -~/2 s in  a dr (e  x/2 COS or) 

~i, = - e - * / 2 { s i n  a d , (e  */2 s in a )  -a r (eA/2)}  

v The  c o m p o n e n t s  o f  the  shear  t e n s o r  a .  a n d  the  sca lar  shear  tr = 
( t r"" t r~ . /2)  1/2 are as fo l lows:  

o -=  3 -1/2 re(-X+~/-~)/2Or{r-le (-~+~)/2 s in  a }  

tr[ = (2/31/2)cr s in  2 a 

o'~ = o'~ = - (2 /31 /2 )c r  s in a cos a = (2 /31/2) tru tu  ~ 

or7 = (2/31/2)tr  cos 2 a 

o ,p = _ 3 - ] / 2 0 .  Or 0 .~. Or~ 
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The nonzero components of the Ricci tensor are given by 

R,, = g, ,(2E l /2)- l  Or( E-1/2Org,,) + 2AFT, 

Rtr : g tr (2El /2) - lOr(  E-1/2Orgn) +2AFTr 

Rr, = grr( 2 E  1/2)- lc9~( E -1/20rg" ) + 2{--C~r A + AI'~, -- A 2} 

Roe = 1 + e~'reE-l[ Aa.g,, + g,,{2A 2 + a.A - A(2E)-10.E}] 

R~,p = sin e ORoo 

The scalar curvature is 

R = 2E-l{A(2a.g.  + g,,A) + 2g,,O + E e - r r  -2 + {E 1/20r(E-I/20.g,,)} 
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